100 research outputs found

    Tissue biopsy for the diagnosis of amyloidosis: experience from some centres

    Get PDF
    A reliable diagnosis of amyloidosis is usually based on a tissue biopsy. With increasing options for specific treatments of the different amyloid diseases, an exact and valid diagnosis including determination of the biochemical fibril nature is imperative. Biopsy sites as well as amyloid typing principles vary and this paper describes methods employed at some laboratories specialised in amyloidosis in Europe, Japan and USA

    Clinical Amyloid Typing by Proteomics: Performance Evaluation and Data Sharing Between Two Centres

    Get PDF
    Amyloidosis is a relatively rare human disease caused by the deposition of abnormal protein fibres in the extracellular space of various tissues, impairing their normal function. Proteomic analysis of patients' biopsies, developed by Dogan and colleagues at the Mayo Clinic, has become crucial for clinical diagnosis and for identifying the amyloid type. Currently, the proteomic approach is routinely used at National Amyloidosis Centre (NAC, London, UK) and Istituto di Tecnologie Biomediche-Consiglio Nazionale delle Ricerche (ITB-CNR, Milan, Italy). Both centres are members of the European Proteomics Amyloid Network (EPAN), which was established with the aim of sharing and discussing best practice in the application of amyloid proteomics. One of the EPAN's activities was to evaluate the quality and the confidence of the results achieved using different software and algorithms for protein identification. In this paper, we report the comparison of proteomics results obtained by sharing NAC proteomics data with the ITB-CNR centre. Mass spectrometric raw data were analysed using different software platforms including Mascot, Scaffold, Proteome Discoverer, Sequest and bespoke algorithms developed for an accurate and immediate amyloid protein identification. Our study showed a high concordance of the obtained results, suggesting a good accuracy of the different bioinformatics tools used in the respective centres. In conclusion, inter-centre data exchange is a worthwhile approach for testing and validating the performance of software platforms and the accuracy of results, and is particularly important where the proteomics data contribute to a clinical diagnosis

    Human wild-type and D76N β_{2}-microglobulin variants are significant proteotoxic and metabolic stressors for transgenic C. elegans

    Get PDF
    β2-microglobulin (β2-m) is a plasma protein derived from physiological shedding of the class I major histocompatibility complex (MHCI), causing human systemic amyloidosis either due to persistently high concentrations of the wild-type (WT) protein in hemodialyzed patients, or in presence of mutations, such as D76N β2-m, which favor protein deposition in the adulthood, despite normal plasma levels. Here we describe a new transgenic Caenorhabditis elegans (C. elegans) strain expressing human WT β2-m at high concentrations, mimicking the condition that underlies dialysis-related amyloidosis (DRA) and we compare it to a previously established strain expressing the highly amyloidogenic D76N β2-m at lower concentrations. Both strains exhibit behavioral defects, the severity of which correlates with β2-m levels rather than with the presence of mutations, being more pronounced in WT β2-m worms. β2-m expression also has a deep impact on the nematodes' proteomic and metabolic profiles. Most significantly affected processes include protein degradation and stress response, amino acids metabolism, and bioenergetics. Molecular alterations are more pronounced in worms expressing WT β2-m at high concentration compared to D76N β2-m worms. Altogether, these data show that β2-m is a proteotoxic protein in vivo also in its wild-type form, and that concentration plays a key role in modulating pathogenicity. Our transgenic nematodes recapitulate the distinctive features subtending DRA compared to hereditary β2-m amyloidosis (high levels of non-mutated β2-m vs. normal levels of variant β2-m) and provide important clues on the molecular bases of these human diseases

    Melphalan and dexamethasone with or without bortezomib in newly diagnosed AL amyloidosis: A matched case–control study on 174 patients

    Full text link
    Oral melphalan and dexamethasone (MDex) is a standard treatment for patients with AL amyloidosis who are not eligible for stem cell transplantation at many referral centers. However, following encouraging reports on the activity of bortezomib combined with alkylators and dexamethasone, these combinations are being moved to frontline therapy. We compared the outcome of 87 patients treated with bortezomib plus MDex (BMDex) with that of 87 controls treated with MDex. Patients and controls were matched for age, cardiac and renal function and free light chain burden. A higher rate of complete responses was observed with BMDex (42 vs 19%), but this did not result in a survival improvement in the overall population. However, a significant survival advantage for BMDex was observed in patients without severe (New York Heart Association class III or IV) heart failure and with N-terminal pro-natriuretic peptide type-B <8500 ng/l. Patients treated with full-dose dexamethasone had similar response rates and survival whether they received bortezomib or not. Intermediate-risk patients who are not fit enough to receive high-dose dexamethasone are likely to take the greatest advantage from the addition of bortezomib to MDex

    Estimation and compensation of motion blur for the reduction of uncertainty in DIC measurements of flexible bodies

    No full text
    Digital image correlation (DIC) is a useful technique to measure displacement/strain fields both for static and dynamic problems in experimental mechanics. When monitoring moving objects with digital cameras, motion blur may occur if the shutter time reaches the time scale of the motion of the measurand. Consequently, motion blur is one of the most relevant problems in those dynamic DIC applications where shutter time cannot be set arbitrarily. This work deals with the problem of compensating motion blur effects on a generic DIC image. The problem of motion blur compensation to reduce DIC uncertainty is discussed in literature in the case of rigid target, where the amount of motion blur is the same for the whole image area. Deformable targets, instead, pose the additional problem when motion blur is variable within a single frame. In this paper a subset-based technique is proposed to estimate and compensate the motion blur for each image region. The approach is tested on synthetically deformed and blurred images of a notched beam specimen

    Image deconvolution techniques for motion blur compensation in DIC measurements

    No full text
    Digital image correlation (DIC) measurements are affected by several sources of uncertainty. Motion blur is one of the most relevant problems in dynamic DIC applications. This work deals with the problem of compensating motion blur effects on DIC. Firstly, a robust motion blur estimation technique based on cepstral analysis is presented and validated. Secondly, the problem of image restoration has been tackled. Two image deconvolution techniques are presented: one based on cepstrum deconvolution and the other based on Wiener filter. The latter has shown better robustness in presence of noise. Each presented technique has been tested with synthetic DIC experiments. Results demonstrate that both the compensation algorithms are able to improve the accuracy of DIC measurement in presence of motion blur

    A motion blur compensation algorithm for 2D DIC measurements of deformable bodies

    No full text
    Digital image correlation (DIC) is a widely adopted optical technique to detect motions and deformations dealing with vision-based systems. Considering DIC dynamic applications, motion blur represents one of the most relevant sources of measurement uncertainty. This paper proposes an innovative approach to compensate the effect of motion blur on images coming from deformable bodies, where the amount of blur (w) varies within the single frame. A subset-based technique is developed to estimate and then remove motion blur for each image region. The algorithm is validated both on synthetic images and experimental data, demonstrating its effectiveness at improving the accuracy of the displacements measured by DIC
    • …
    corecore